

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF SCIENCE : APPLIED MATHEMATICS AND STATISTICS		
QUALIFICATION CODE: 07BAMS.	LEVEL: 7	
COURSE: MECHANICS	COURSE CODE: MCS702S.	
SESSION: JANUARY 2020	PAPER: THEORY	
DURATION: 180 Minutes	MARKS: 100	

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER:	Dr IKO AJIBOLA	
MODERATOR:	Prof D. MAKINDE	

INSTRUCTIONS

- 1. Answer all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written works must be done in blue or black ink and sketches in pencils

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Excluding this front page)

ATTACHMENTS

None

QUESTION 1 (20 marks)

1.1 If
$$\overline{A} = 16t^2i + 10tj + 2\sin 5tk$$
.

1.1.1 Find the vector
$$\frac{d^2\overline{A}}{dt^2}$$
 at $t=3$ [3]

1.1.2 Determine the magnitude of
$$\frac{d\overline{A}}{dt}$$
 at $t = 3$ [2]

1.1.3 Find the unit vector along vector
$$\frac{d\overline{A}}{dt}$$
 at $t = 3$ in terms of the unit vectors **i**, **j** and **k** [3]

1.1.4 What is the magnitude of the unit vector of
$$\frac{d\overline{A}}{dt}$$
 at $t = 3$ [2]

- **1.2** If **R** and **S** are 3-dimensional vectors. Define:
- **1.2.1** the scalar product of the vectors [2]
- **1.2.2** the vector or cross product of the vectors. [3]
- **1.2.3** Find the magnitude and direction cosines of the product vector of $\overline{P} = 5i + 3j k$ and $\overline{Q} = 2i j + 4k$, in that order. [5]

QUESTION 2(20 marks)

2.1 If $\vec{R} = 10t\underline{i} - 6t\underline{j} - 9t\underline{k}$ and $\vec{S} = 16\underline{i} + t\underline{j} + t^2\underline{k}$ are two position vectors.

Determine
$$\frac{d}{dt}(\vec{S} \bullet \vec{R})$$
 at $t = 2.50$ [6]

2.2 Find
$$\frac{1}{7} \frac{d}{dt} (\vec{S} \times \vec{R})$$
 at $t = 3.0$ [6]

2.3 Find the definite integral
$$\int_{0}^{2} (\vec{S} \times \vec{R}) dt$$
 [8]

QUESTION 3 (19 marks)

	3.1 3.1.1 3.1.2	Define the average velocity $v_{av,x}$ of a particle in a straight line more between two points A and B. Using your result in (3.1.1) obtain the instantaneous velocity v_x of the straight line motion.	tion [3] [3]	
	3.2	Suppose at any time t, the velocity v of a car is given by the equation $V_x = 60m/s + \left(0.500m/s^3\right)t^2$	on	
	3.2.1	Find the change in velocity of the car in time interval between $t_1=$ and $t_2=3.00s$	1.00 <i>s</i> [5]	
	3.2.2	Find the average acceleration in this time interval	[3]	
	3.2.3	Estimate the instantaneous acceleration at $t_1 = 1.00s$ taking $\Delta t = 0.10s$	[5]	
	N 4 (17 mar		d. 5	
4.1	of an o	Derive an expression for the work done by a constant force \vec{F} of magnitude F of an object that undergoes a displacement \vec{S} along a straight line, when		
	F ma	kes an angle ϕ with $ec{S}$ when acting on the object.	[4]	
4.2	It is ob	celeration of a point in rectilinear motion is given by $a=-9.8$ served that the velocity v is zero, and displacement x is +25 when t nine the equation of the displacement.	= 0 [6]	
4.3	3.1 Using	$\sum \overline{F} = m\vec{a}$ state Newton's second law of motion in its component		
4.3	horizor	vay station attendant with spikes on his shoes pulls with a constant ntal force of magnitude 35N on a box with mass 50kg resting on a flatess surface.	[3] at,	
	Detern	nine the acceleration of the box.	[4]	

QUESTION 5 (24 marks)

- 5.1 Obtain the formula $F_{total}S = \frac{1}{2}mv_f^2 \frac{1}{2}mv_i^2$ of a particle of mass m moving with velocity V in relationship with the work-kinetic energy theorem $W = K_f K_i = \Delta K$. [6]
- 5.2 If total momentum vector \vec{P} , has three components derive the three components in the x, y, z axis [3]
- 5.3 Explain clearly with examples what you understand by conservation of momentum [5]
- 5.4 A small compact car with mass 1500kg traveling due North, with a speed of 25m/s, collides at an intersection with an Intercampus bus of mass 7500kg traveling due West at 13.5m/s. treating each vehicle as a particle, find the total momentum just before collision. [10]

END OF EXAMINATION